An amperometric sensor for detection of tryptophan based on a pristine multi-walled carbon nanotube/graphene oxide hybrid.

نویسندگان

  • Junfeng Han
  • Qingqing Wang
  • Junfeng Zhai
  • Lei Han
  • Shaojun Dong
چکیده

We report the fabrication of a novel amperometric sensor for tryptophan (Trp) based on a pristine multi-walled carbon nanotube/graphene oxide (pMWCNT/GO) hybrid obtained through the sonication of pMWCNTs in an aqueous solution of GO. The results of transmission electron microscopy and electrochemical impedance spectroscopy demonstrate the successful formation and the excellent charge transfer ability of the resulting hybrid. Compared with the commonly used acid-treated MWCNTs and GO, the resulting hybrid exhibits better electrocatalytic activity towards the oxidation of Trp, which is attributed to the synergistic effect of MWCNTs and GO. The current-time curve reveals that the catalytic oxidation current is linearly dependent on Trp concentration in the range of 50 nM to 4.25 μM with a detection limit of 8 nM (S/N = 3). In addition, the proposed sensor is successfully employed to detect Trp in the real samples with satisfactory results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene Oxide/Polyaniline-Based Multi Nano Sensor for Simultaneous Detection of Carbon Dioxide, Methane, Ethanol and Ammonia Gases

In this study, a multi nanosensor was fabricated for the simultaneous detection of carbon dioxide, methane, ethanol, and ammonia gases, and its electrochemical response to various concentrations of these gases were investigated. In order to fabricate this multi nanosensor, in the first phase, the Graphene-Oxide/Polyaniline (GO/PANI) nanocomposite was synthesized. Chemical ...

متن کامل

Electroanalytical sensing of Asulam based on nanocomposite modified glassy carbon electrode

In this study a facile approach to employ Copper nanoparticle (CuNPs) and multi-walled carbon nanotubes (MWCNT) as the nanomaterial for selective detection of asulam have been investigated. This work reports the electrocatalytic oxidation of asulam on glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNT), ionic liquids (IL), chitosan (Chit) and copper nanoparticles ...

متن کامل

Oxidized multi walled carbon nanotubes for improving the electrocatalytic activity of a benzofuran derivative modified electrode

In the present paper, the use of a novel carbon paste electrode modified by 7,8-dihydroxy-3,3,6-trimethyl-3,4-dihydrodibenzo[b,d]furan-1(2H)-one (DTD) and oxidized multi-walled carbon nanotubes (OCNTs) is described for determination of levodopa (LD), acetaminophen (AC) and tryptophan (Trp) by a simple and rapid method. At first, the electrochemical behavior of DTD is studied, then, the mediated...

متن کامل

Highly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide

A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...

متن کامل

A Certain Electrochemical Nanosensor Based on Functionalized Multi-Walled Carbon Nanotube for Determination of Cysteine in the Presence of Paracetamol

The modified glassy carbon electrode (GCE) was prepared with 6-amino-4-(3,4-dihydroxyphenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (pyrazole derivative (AMPC)) and functionalized multi-walled carbon nanotubes. In this research, electrocatalytic activity of nanocomposite (AMPC/MWCNTs) has been studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Analyst

دوره 140 15  شماره 

صفحات  -

تاریخ انتشار 2015